Mean first passage times across a potential barrier in the lumped state approximation
نویسندگان
چکیده
The lumped state approximation ~LSA! is a method for handling boundary conditions for diffusion on an interval which simplifies the description of transitions into and out of the interval. It was originally motivated by the problem of proton conduction through the ion channel gramicidin. This paper discusses the mean first passage time of a diffuser crossing a potential barrier in the lumped state approximation. The LSA mean first passage time is shown to be identical to a different quantity, the interior mean first passage time, clarifying the nature of the approximation. We also discuss a variant of the LSA in which dependence on an applied electrical potential is made explicit; an optimal value for an effective electrical distance is found. A detailed comparison is made of the LSA mean first passage time with several other formulations of the mean time to cross a barrier. © 2001 American Institute of Physics. @DOI: 10.1063/1.1330215#
منابع مشابه
Analysis of nucleation using mean first-passage time data from molecular dynamics simulation.
We introduce a method for the analysis of nucleation using mean first-passage time (MFPT) statistics obtained by molecular dynamics simulation. The method is based on the Becker-Döring model for the dynamics of a nucleation-mediated phase change and rigorously accounts for the system size dependence of first-passage statistics. It is thus suitable for the analysis of systems in which the separa...
متن کاملDistribution of First Passage Times for Lumped States in Markov Chains
First passage time in Markov chains is defined as the first time that a chain passes a specified state or lumped states. This state or lumped states may indicate first passage time of an interesting, rare and amazing event. In this study, obtaining distribution of the first passage time relating to lumped states which are constructed by gathering the states through lumping method for a irreduci...
متن کاملInducing Hidden Markov Models to Model Long-Term Dependencies
We propose in this paper a novel approach to the induction of the structure of Hidden Markov Models. The induced model is seen as a lumped process of a Markov chain. It is constructed to fit the dynamics of the target machine, that is to best approximate the stationary distribution and the mean first passage times observed in the sample. The induction relies on non-linear optimization and itera...
متن کاملMean Direct-Transit and Looping Times as Functions of the Potential Shape.
Any trajectory of a diffusing particle making a transition between two end points of an interval can be divided into two segments, which we call direct-transit and looping parts. The former is the final segment of the trajectory, when the particle goes from one end point of the interval to the opposite end point, without retouching the starting point. The rest of the trajectory is the looping p...
متن کاملEnhancement of stability in randomly switching potential with metastable state
The overdamped motion of a Brownian particle in randomly switching piece-wise metastable linear potential shows noise enhanced stability (NES): the noise stabilizes the metastable system and the system remains in this state for a longer time than in the absence of white noise. The mean first passage time (MFPT) has a maximum at a finite value of white noise intensity. The analytical expression ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000